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Agenda 

• The Relationship of Coating Properties That We Can “Easily” 
Measure vs. the Properties We Need…ɑS &  ɛH 

• How Solar Absorptance is Determined 
• Description of Solar Reflectance measurement techniques 

• Typical data 

• How Thermal Hemispherical Emittance is Determined 
• Conversion of normal emittance to hemispherical emittance 

• Emittance vs. temperature 

• Description of measurement techniques 

• Typical data 

• Factors that Influence Thermal Radiative Properties 

• BRDF – Specular and Diffuse 

• GSFC Instruments Overview 

• Types of Coatings Used at GSFC 
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Thermal Radiative Properties of Coatings 
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• Reflectance 

• Transmittance 

• Absorptance 

• Emittance 



Thermal Radiative Properties of Coatings 

• Radiant energy is reflected, transmitted and/or absorbed by  a surface 
or material 

r + t + a  = 1, for materials,  where t = 0, r + a = 1, or a = 1- r 

Where: Reflectance = r, Transmittance = t, and Absorptance = a 

• Emittance (e) is the rate at which a body radiates energy (heat) at a 
given temperature in relation to the rate a black body radiator radiates 
energy (heat) at the same temperature 

• Kirchhoff’s Law 
• Ideal radiator, when in thermal equilibrium, the body emits radiant energy at 

the same rate at which it absorbs  
 = e 

• In the Aerospace Industry, a  and e are never directly measured – 
THEY ARE CALCULATED! 
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(Information Obtained From Thermal Radiative Properties Coatings, Thermaphysical Properties of Matter, Volume 9) 



Solar Absorptance Property Measurement 

• At GSFC, the instrumentation used to calculate the solar absorptance measures over the 
spectral range of 250 to 2800 nanometers (.25 to 2.8 microns).  An integrating sphere is 
used to measure the coating’s reflectance for the solar absorptance calculation 

• Solar Absorptance is the total solar energy absorbed by the surface divided by the total 
solar energy integrated as a function of the wavelength 

 

 

 

 

• Where R = reflectance, S = solar energy, as = solar absorptance, and l = wavelength 

• The reflectance measurement is performed near-normal (angle of incidence = 15º).  This 
measurement is typically sufficient for most surfaces up to approximately 45º   

• Whereas, when measuring cylindrical surfaces, spherical surfaces or angle of incidence 
greater than 45º, variations in the angle of incidence will influence the solar 
absorptance value and must be measured 

• Typically the Johnson curve is used to represent the total solar energy over the solar 
spectrum 
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Reflectance and the Johnson Curve 
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Johnson curve (blue) and the Polyrip clear/VDA (red) 

Solar Absorptance value = .405 



Directional Total Reflectivity 
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Two Types of Integrating Spheres 
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LPSR-300 Reflectometer Optical Schematic 
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Reflectance Curves of Various Thermal Coatings 
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Emittance Property Calculation 

• Normal Emittance 

• At GSFC, the instrumentation used to calculate the normal reflectance measures over the 
spectral range of 5 to 100 microns at room temperature 

• The normal emittance is calculated by measuring the reflectance of a material’s surface in the 
infrared region of the spectrum and subtracting the measured reflectance from one (for opaque 
coatings only)  

 
 
 
 

• Hemispherical Emittance 

• For thermal modeling and analysis, the emittance must be in terms of a hemispherical (total 
body) emittance value.  Converting normal emittance to hemispherical emittance can be 
accomplished by using a conversion table and chart by E. Schmidt, E. Eckert, and M. Jakob 

• Hemispherical emittance can also be determined by calorimetric emittance measurement 

• With the addition of an ellipsoidal attachment, GSFC also has the capability of calculating 
hemispherical emittance as a function of temperature by radiometric reflectance measurement 

August 6, 2015 11 



Directional Emissivity Curve For a Conductor 
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Hemispherical Emissivity Coordinate System 
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Ratio of Hemispherical to Normal Emissivity for 
Conductors 
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Directional Emissivity Curve for a Dielectric 
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Directional emissivity curve for a dielectric  
with an index of refraction of n=1.5 
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Ratio of Hemispherical to Normal Emissivity for 
Insulators 
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Ratio of Hemispherical to Normal Emittance 

for an Insulator
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DB 100 Optical Diagram 
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SOC 100 Optics 
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Illumination:        Hemispherical 
Detector:              10˚ -80˚  
Detector type:     FTIR: Si, KBr, Pe 
Detector Range: 2-100μm 

Accuracy:             ± ? 
Measurement:   Hemispherical-Directional 
             Spectral 



Temp200A Optical Diagram 
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Dielectrics over Metals 

*   Charts reproduced from Heaney, Triolo, and Hass, “Evaporated Thin Films                      
     For Spacecraft Temperature Control Applications”, July 1977. 

**   Oxide Thickness is represented as /4 at 550 nm. 
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Emittance of SiOx Coated Aluminum 

as a Function of Oxide Thickness*
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Spectral Reflectance  

August 6, 2015 22 



Blackbody Spectral Radiance 
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Emittance of a Hypothetical Coating and 
Two Black Body Temperature Curves 
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Calorimetric Results for A276 
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Aeroglaze A276 (3.0 mils)
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Infrared Reflectance of A276 
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Factors that Influence  
Thermal Radiative Properties 

• Solar Absorptance and/or Emittance Values Influencing Factors: 
• Surface Finishes  

• Highly Polished (mirror-like/optical surface) 

• Polished 

• Buffed 

• Matt 

• Machined 

• Substrate Texture 

• Rough versus Smooth 

• Woven 

• Bead Blasted (sand, glass, etc…) 

• Immersion Rate for Chemical Coatings Processes (i.e., Anodized, Irridited) 

• Coating Thickness 

• Coating Adherence 

• Transmissivity 

• Electrical Conductivity 

• Contaminants 

• Sample/Hardware Size and Configuration 
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Solar Absorptance of a White Silicone Paint  
as a Function of Thickness 
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NASA-GSFC Thermal Control Coatings 
Measurement Instrumentation 

• AZTek Laboratory Portable Spectroreflectometer (LPSR-300 and LPSR-
200) 

• Cary 500 IR/Vis/UV Spectroreflectometer 

• Geir-Dunkle DB-100 Reflectometer 

• SOC-100 Infrared Spectroreflectometer (2μ - 100μ) 

• Bi-Directional Reflectance Distribution Function (BRDF) 

• Light Analyzer Microscopic Imager 

• Calorimetric Emittance Chamber  
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Bi-directional Reflectance Distribution Function 

• BRDF is a precise measurement of the intensity 
and direction of the reflection of light from a 
surface 

 

 

Power reflected per unit area per solid angle 

Power arriving per unit area  X  cos(s) 
 

 

• BRDF is a point property of a surface. BRDF is a 
function of the direction of the incident light and 
the direction of the scattered light 

 

• Our facility has the capability to measure light 
scattering at 632.8 nm, 442 nm, and 830 nm 
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Bi-directional Reflectance Distribution Function 

• Perfectly diffuse or lambertian surface has constant BRDF; 
 

  Power reflected per unit area per solid angle =  

   BRDF  X  power arriving per unit area  X cos(s) 
 

• BRDF measurements/data are used to: 

• Calculate the amount of light or energy scattered by specific surfaces in 
critical applications 

• Example -- sunshield 

• Evaluate or monitor the condition of a surface with respect to 
contamination or roughness 

• Example -- optics (mirrors) 

• Determines specularity of surfaces for special cases 

• Calculate solar pressure 
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Types of Thermal Control Coatings 

• Paints (Z93P, Z306, AZ93, Z93-C55, AZWLA2, Z276, Z307, etc….) 

• Metals (Al, Ag, Au, Ni, Stainless Steel, Cu, Mg, Ti, etc…) 

• Sheet Films (Kapton®, Ge/Black Kapton®, Black Kapton®, Teflon (FEP), etc…) 

• Tapes (Ag/FEP, Al/FEP, Al/Kapton®, Al Foil, Kapton®, Black Kapton® etc…) 

• Vacuum Deposited Coatings [Evaporated/Sputtered] 

• Metals (Al, Ag, Au, Ti, Ge, Cr, Ni, etc…) 

• Dielectrics (Al2O3, SiOx, CCAg, CCAl, Dark Mirror, etc…) 

• Conductive Coatings (ITO, ATO, Ge, Z93-C55, Z307, etc…) 

• Anodized Aluminum (Black, Hard, Clear, Plain, etc…) 

• Chemical Conversion (Irridite, Alodine, etc…) 

• Optical Surface Reflectors [OSR] 

• Solar Cells 
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